Menu
Libération
interview

«La Bourse, ce hasard sauvage»

Article réservé aux abonnés
publié le 24 février 1998 à 18h53
(mis à jour le 24 février 1998 à 18h53)

Benoît Mandelbrot, le père des mathématiques fractales, l'avait écrit dès 1966: au jeu de la Bourse et du hasard, on perd beaucoup plus souvent que ne l'avouent les courtiers. Au moment où les Bourses orientales s'écroulent les unes après les autres, cette affirmation prend une allure de prédiction. Elle ne repose pourtant sur aucun raisonnement économique. Uniquement sur la similitude formelle entre les courbes dessinées par un ordinateur suivant les ordres d'un programme simplet et les cours réels de la Bourse. Une similitude d'autant plus étrange que les fractales utilisées par Benoît Mandelbrot ­ ces chiffres qui traitent les dimensions géométriques intermédiaires entres les dimensions entières (les 0, 1, 2 et 3, respectivement pour le point, la ligne, la surface et le volume) ­ servent surtout à décrire le hasard et le chaos. Dans Fractales, hasard et finance (1), le mathématicien réédite et développe des articles qui prévoyaient ­ il y a plus de trente ans ­ ce type de déconvenue.

Dans votre livre, vous distinguez les hasards «bénins et sauvages». Que signifient-ils?

En science, le hasard n'est pas le «sort» personnifié, mais uniquement une mesure de notre ignorance. Dans certains domaines comme la physique classique, cette ignorance est contrôlable par les mathématiques. C'est un hasard que j'ai baptisé bénin. Si l'on attend suffisamment longtemps, on découvre l'ordre caché. Si vous jouez à pile ou face de nombreuses fois, vous aurez une statistique trè